“Vivre, c’est transformer en conscience une expérience aussi large que possible”disait André Malraux. Nos Intelligences Artificielles contemporaines, souvent fantasmées pour leurs capacités, sont bien loin de ces considérations. 

Il ne s’agit pas ici de nier, les résultats spectaculaires obtenus depuis le tournant des années 2010, dans le domaine des algorithmes d’apprentissage ou Machine Learning, dû en partie, d’une part à la démocratisation des capacités de calcul nécessaires à ces algorithmes et d’autres part au verrou de la dimensionnalité qu’ont su, si ce n’est résoudre, au moins grandement dégripper les réseaux de neurones convolutifs (ou CNN). La libération de ces verrous a trouvé des applications pour tous et dans tous les domaines , qui plus est de manière si rapide, que les capacités nouvelles de ces outils, ainsi mis en lumière, peuvent se transformer pour certains en miroir aux alouettes. Qui n’a pas entendu ou lu depuis quelques années des récits prophétiques où les robots bientôt rêveraient.

A Geomatys, peut être en partie car un de ses fondateurs possédait un retour d’expérience notable sur ces outils manipulés durant sa thèse au milieu des années 2000, de leurs avantages et de leurs limites, nous avons dans un premier temps, regardé ce bel objet qu’étaient les réseaux de neurones convolutifs comme un prolongement de nos activités plutôt que comme un axe d’activité à part entière.

Ainsi l’avons nous mis en en œuvre très tôt pour des besoins de classification d’objet dans des d’image satellites, où à d’autres fins mais sans pour autant en faire l’alpha et l’oméga de nos activités futures. Il faut sans doute y voir ici, un hasard conjoncturel où la connaissance de l’outil nous a empêché d’adhérer à la mythologie collective se mettant en place. Ainsi avons-nous continué à consolider nos fondamentaux quant à la maîtrise de la gestion de l’information spatiale pour les grosses infrastructures de données, cet outil étant un parmi tant d’autres.

Or aujourd’hui, à la ville comme à la campagne, force est de constater qu’il y a les entreprises qui en sont et celles qui n’en sont pas. Nécessité faisant loi, nous faisons donc ici notre coming out communicationnel et présentons ci-après nos activités dans le domaine pour affirmer que oui, nous en sommes!

Aujourd’hui l’IMINT mobilise grandement les réseaux de neurones convolutifs pour automatiser très efficacement les tâches de reconnaissances d’objets dans une image, et avec force données d’apprentissage cela fonctionne très bien eu égard aux types de corrélations spatiales qu’un CNN est capable de capturer. 

De nombreuses sociétés se sont donc positionnées sur ce segment d’activité. Ayant raté le premier train, nous avons donc décidé de construire nous même notre locomotive et de nous positionner sur ce que nous pensons constituer le gros du potentiel encore sous exploité du Machine Learning, et avons démarré depuis un an trois projets distincts sur chacun des domaines.

Couplé aux 15 années d’expertises de Geomatys dans le domaine de l’interopérabilité, du traitement et des infrastructures massives de données géospatiales, et de consolidations de cette expertise dans sa gamme logiciel Examind, nous oeuvrons désormais à transformer nos expériences dans le domaine du machine learning en des fonctionnalités facilement re-mobilisables pour nos client. Ce n’est pas Malraux mais ce n’est pas mal non plus.